Econometrics 6027
Lecture 9
Nonparametric Estimation Methods

Say you have the data shown in this graph. This is highly nonlinear and the
nonlinearity may not be captured by parameters in a conventional regression.
Even quantiles will not capture the shape of this data. The average individual
moves, as shown by the grey line.

An alternative way to analyze economic relationships is to use nonparamet-
ric regression analysis, which allows the data to determine the local shape of
the conditional mean relationship. Highly nonlinear relationships are better
estimated by nonparametric regressions because the latter better capture the
shape of the relationship. Nonparametric models are of the form:
y=m(z)+u

where E(u|z) = 0 and m(z) does not have a parametric representation.

In general, such models build a distribution by estimating the density to the
width of a bandwidth around a point. We will focus on the kernel estimator,

which assigns weights to data based on their distance from the point at the
centre of the bandwidth.

1 Deriving the Kernel Estimator

We have y = m(z) + u, so:

E(y|z) = E(m(x)) + E(ulz) but E(ulz) =0
= E(m(z))

= /y * fy|z)dy
f(
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This is a population measure. We need a method to estimate these joint and
marginal densities from a sample.

Let X1, X3, ...X,, be itd random variables with continuous distribution function
F(z) = Pr(X; < z). Recall that Pr(X; < z) = E[I (X; <z)|, where I(.) is the
indicator function. Replacing the population expectation by its sample analog
gives the empirical function

S I(X; <),

i=1

1
n

which estimates the unknown distribution by counting the number of observa-
tions that are less than or equal to x. If X has a discrete distribution, then:

But how to estimate the pdf of x, f (x)? One natural estimator is the histogram
estimator which computes the difference between two points of the empirical
distribution function
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where h is the bandwidth. If we divide equation ?? by the width 2h and let
h — 0, we have the definition of the density

fa) = }yg})F(x—!—h)Q—hF(x— h)

The histogram density estimator is obtained by rewriting the above as
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Where the term within brackets is:
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This is a histogram estimator. You choose h, the bandwidth, which specifies the
width of these rectangular histograms in the data. There are several drawbacks
of this estimator. First, it is not smooth (differentiable) whereas the true density
is smooth. Second, it weighs equally all points in the interval [x — h,x + h]
although we may prefer to assign more weight to points close to x.

A more appealing estimator is the kernel density estimator given by
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where h is the bandwidth parameter and K (u) is the kernel (window) func-
tion. Note that the histogram estimator is also a kernel estimator with a kernel

function K (u) = 17 (Ju| < 1).

The kernel function is a weight function that puts different weights on different
points. Typically, it puts more weight on points near x and the weights decline
as X; gets farther away from x. "Near” and ”far” from x is determined by the
bandwidth parameter h. If h is large, we choose a large neighbourhood around
x and the density estimate could be too smooth. If h is small, we take only
a small neighbouhood around z and this may result in an estimate that is too
variable. We will discuss the optimal choice of h and its effect on the bias and
the variance of f, (z) later in the lecture.

1.1 Common Kernel Functions

Some commonly used kernels are:

1. Gaussian

2. Epanechnikov

K(w)=3 (- I(u <1)

Note that the Epanechnikov kernel is quadratic between —1 and 1.

3. Quartic

15
K (u) = 5 (1 u?)* I (|ul < 1)
The quartic kernel is a 4th order kernel and is square of the Epanechnikov
kernel (up to a constant).

1.2 Properties of the Kernel Estimator

1. continuous
K (u) is continuous

2. symmetric
K (u) = K (—u) around 0

3. behaves like a density
[ K(uwdu=1

4. variance is finite
-0 < [u?K(u)du < co.



The order of a kernel is the smallest positive integer p such that ffooo K(u)du #
0. If K(u) is a proper pdf, then p = 2. The standard kernels are second-order
kernels. Higher-order kernels (p > 2) require K(u) < 0 for some w which is not
possible with density functions.

2 Choosing the Bandwidth

The choice of h requires a trade-off between bias and variance. If we choose a
very small h, then bias is small but variance is large. The density estimate is
not very smooth. If we choose a very large h, then the bias is large but variance
is small. We get an oversmoothed density that distorts the shape of the true
density.
There are three ways to choose h:

1. minimizing the Integrated Mean Square Error (IMSE),

2. the Silverman Rule, and

3. Cross-Validation.

We now examine each in turn.

2.1 Minimize Integrated Mean Square Error (IMSE)

One way to determine the optimal choice of h is by minimizing the integrated
mean squared error (IMSE). If the Mean Square Error (MSE) is:
MSE = (Bias(f))? + Var(f)
Then IMSE is:
IMSE = / [(Bias(f))? + Var(f)*dz

The bias and variance are defined as follows:
h*o%f
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Var(fu(o) = o f(e) [ K*(w)du

Bias(f) = u? K (u)du

assuming that f (z) is twice continuously differentiable. Using these expressions
for the bias and the variance, we can find IMSE by integrating across x:
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Since [ f(z)dz = 1.

Minimizing IMSE with respect to h, the first order condition is:
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Define C such that the expression in [.| = C5. Then,
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2.2 Silverman Rule

h = 6Cy(k)n~Y% if X ~ N(u,0?)
K (u) Gaussian

h ~ 1.0590n~'/5

If asymmetric, h ~ 0.94n~" /5

If f(z) is the normal density N (M, 02) and K (u) is the Gaussian kernel, direct

calculation shows that the optimal bandwidth is given by h* ~ 1.0590n 5. This
is the ”plug-in” rule typically used in empirical work. If the density is bimodal
or very skewed, two alternative choices of h are h = .QRH_%, where R is the
interquartile range or h = .9An_%,A = min (O’, TI;A) . Similarly, by minimizing
IMSE with respect to K (u) yields the Epanechnikov kernel, suggesting that it
is the optimal kernel.

2.3 Cross-Validation

The value of the bandwidth parameter can be selected through cross validation.
Let mip ;(X) denote the kernel estimate obtained from leaving out observation
j and then fitting a kernel of Y on X using all the remaining n — 1 points. The
cross-validation function is:

CV(h) = — > [¥; = mig; (X)]?

j=1

Then we choose h that minimizes C'V (h) over a grid of different values for h.



It has been found that in practice the choice of the kernel does not affect the
results substantially whereas the choice of the bandwidth is crucial. If we choose
a very small h, then the bias is small but the variance is large and since there are
no enough points for averaging or smoothing, we get an undersmoothed density
estimate. By contrast, if we choose a very large h, then the bias is large but
the variance is small, and we get an oversmoothed density estimate that may
lead to significant distortions in the shape of the true density (e.g., a bimodal
density can be estimated as unimodal).

3 Asymptotic Properties

Recall that the order of a kernel is the smallest positive integer p such that
[Z5_ K(u)du # 0. From the equations for IMSE, we see that Bias(fy) = O(h?)
and Var = O((nh)~!). For convergence in mean square, we require that Bias —
0 and Var — 0 as n — oo.

Consistency
We wish to know if the kernel density estimator fh(m) is consistent. We find
that:

If h — 0 and nh — oo, then fj,(z) 5 f(z)

That is, the kernel estimator is consistent under these conditions. This can be
derived as follows, given that (f,(z) — f(x)) is the bias of the kernel estimator.

Say we normalize by multiplying by vnh:
VnhE(fu(z) — f(x)) = VnhBias(f,(z)) where

. a2 h? 9 f .
Bias(fn(x)) = 3 P2 u? K (u)du since
h? = Vht = ()2 so
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Thus, the order of the bias of the kernel estimator is bounded at a constant
a = V/nh®. This bias is a constant, but we want it to go to zero; otherwise, we
could have say that n — oo and h — 0 and the bias could explode. If we add

the condition that nh® — 0, the bias will go to zero. Thus Ord”((nh5)l/2)

goes to zero, on the condition that nh® — 0.

Similarly, for consistency, we need the variance to be bounded. We have

Var[\/%(fh(@ — f(x))]
= nhVar(fu(z) — f(z))
= nhVar(fu(z))

—nh[ X/K2 du}
/K2 )du

) — Bounded

Thus the variance converges to a constant ¢ given n — oo, h — 0, nh — o0,
nh® — 0).

Asymptotic Normality

We have shown that v/nh(fn(X)— f(X)) converges in distribution. If nh® — 0
then as h — 0 and n — oo,

Vah(fu(X) = F(X)) = N(0, f(X) fK (u)*du)

Does the non-parametric kernel estimator converge faster or slower than para-
metric estimators? Parametric estimators converge at a rate of nz. Recall from
minimizing IMSE we found that the optimal bandwidth was h = ens . The

-1 . . .
kernel converges at a rate of vVnh = Vn*cns and since we can eliminate the
constant which doesn’t change over time, we have the kernel convergence rate

as Vn5 = Vns =nk.

The kernel rate of convergence is slower than the parametric rate of convergence:
2 1 . . . .
n5 < n2. There is thus a decrease in asymptotic normality.

4 The Multivariate Kernel Estimator

We can extend the approach outlined above to estimating the joint PDF:

= —— E K K .




You can show that Bias (fh(x,y)> = O(h?) as before but Var(fy(z,y)) =

O ((nh?)~1'), where j is the number of variables (j = 2 for bivariate density as
in this example).

This is the well-known Curse of Dimensionality that plagues nonparametric
multivariate estimators. Recall that in parametric models, if we double the
sample size we reduce the variance of the estimators by a half regardless of the

dimensionality (number of variables). In the nonparametric estimation, this is
not the case.

The general form for the kernel density estimator of a P—m dimensional variable

T is:
1 n
SE S
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where Ky = det (H) 'K (H 'z) for some multivariate kernel function K (x)
and for a given P x P matrix of bandwidths H. The simplest multivariate ker-
nel is a product of univariate kernels of the form K(z) = H5_1 k(xp), and a
typical matrix of bandwidths would either be diagonal or related to the sample
covariance S of the variable z such that H = h - S2 for some positive scalar h.

When z is univariate, the kernel density estimator reduces to:

fh ZK}L

where Kj,(z) = h'k(¥) for a scalar bandwidth h?.

5 Kernel Regression
Suppose we have the regression model:
Yi=m(z)+u

with E(ulz) = 0 but u could be heteroskedastic. We wish to estimate m(X)
without parameterizing it. We derive the regression function as:

m(X) = E(Y|X) = /Yf Y|X) dy—/YfXY ay

where the numerator Y f(X,Y") is the joint density of X and Y and the denom-
inator f(X) is the marginal density of X. This is equal to:

1
m(z) = m/Yf(X,Y)dY



The sample version is:
1 A
(X)) = f/th(X, Y)Yy
fn(X)
but we know from the last section that the kernel estimator for a joint PDF is:
= 1 & z—X; y-Y;
XY)=— K K .

and we found at the beginning of the lecture that the kernel estimator for a
univariate PDF was:

fh(x)nh;K< h )
Substituting these expressions into the regression function, we obtain:
= [V K (355K (Y52 d
M(X) = anz S 12 n( h })(7)(( ) dy
i K (557)
_ i KA [ Y E(YF)dY
an 2 K (55)

Using the change of variable technique, we define v = Y;Yi such that Y = Y;+hv
and dY = hdv and substitute. By substitution, we know:

YK(¥) = (it ho)» K(¥) = (Y; + hv) * K (v)
(X)) = YK (X5X) f%()}(fi;hv)K(v)hdv
Y K(E5)
_ LK) [+ ho)K (v)dv
5K (79
_ LK) Kw)dv + 3, K (F55)h [ vK (v)dv
ZK(XZXi)

But [ K(v)dv =1 and vK (v)dv = 0. Therefore,

_ LYK (55E)

m(X) =
SRS SIE=0

5.1 Analysis of the Kernel Estimator

This is the Nadaraya-Watson nonparametric Kernel estimator. Note that you
still need to choose the h. The more variables we have, the slower convergence we



will have. There are good packages in R and also by Jeff Racine for programming
non-parametrics. You can use splines instead of bandwidths for calculation. The
CRS program gives you the marginal effect program.

It is interesting to note that if h = 0, then

) Yo if X=X,
mp (X) = .
0,if X#X;
Also, if h — oo, then ni;, =Y for all X. Hence, a bigger value of h will produce
a smoother (or flatter) nip(X). Therefore, the sensible value of h should lie
between these two extremes.

It is also interesting to note that we can use an alternate notation according to
which the estimator is rewritten as ni,(X) = Y7, w;Y; which is a weighted av-
X—X
% The motivation behind this form of the
i=1 h
estimator is that if m(X) is sufficiently smooth, then in a small neighbourhood
of X, m(X) is nearly constant and can be estimated by a weighted average of
Y;’s which correspond to those X;’s that are near X (for a given h: if h = 0,

M =Y for X = X;, 0 otherwise. h = o0, m = YeX).

erage with weights w; =

5.2 Asymptotic Properties

Consistency
If h — 0 and nh — oo, then nip(X) =P m(X).
Asymptotic Normality

If hn® — 0 then:

Vnh(mip(X) —m(X)) =% N <o, EJ(jEX))() [ h K(u)Qdu>

5.3 Multivariate Kernel Regression
Let m(X,Z) = E(Y|X, Z). Then the kernel estimator is given by:

VK X=X K (4=%:
i) B e

The derivation of this estimator is similar to the derivation of the univariate

estimator. Substitute the kernel estimators of the joint densities f(Y, X, Z) and
f(X,Z) into E(Y|X,Z) = fyj}();(ix;)fy Analogously to the nonparametric
estimation of multivariate densities,, this estimator also suffers from the curse
of dimensionality and its rate of convergences is given (nh’ )%, where j is the
number of regressors.
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